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Under special circumstances, the diffraction symmetry of a crystal may be higher than that corresponding 
to the crystal Laue class. The phenomenon has been termed 'diffraction enhancement of symmetry'. 
Iwasaki [Aeta Cryst. (1972), A28, 253-260] is responsible for the first systematic attempt to develop a 
comprehensive theory of this phenomenon. In this paper, a more general formulation has been developed 
which leads to enhancement conditions more compact and easier to use than Iwasaki's. By use of these 
conditions, several new cases of enhancement have been found, in addition to all the cases previously 
published. Several theorems are enunciated and proved which strongly limit the possible cases of en- 
hancement. The formulation includes also the so-called 'double enhancement'. A set of double-enhance- 
ment cases has been found and tabulated. The extension of some of the theorems proved for simple en- 
hancement provide limitations to the possible cases of double enhancement. 

1. Introduction 

The diffraction pattern of a crystal (i.e. diffracted in- 
tensity as a function of position in reciprocal space) 
is nonperiodic, and its symmetry can be consequently 
described with reference to some particular point 
group. The relation between that point group and the 
crystal point group is governed by von Neumann's 
principle, which, applied to this case, states that the 
diffraction pattern symmetry must correspond to a 
point group which is a supergroup (possibly an im- 
proper one) of the crystal point group. In the most 
general case (arbitrarily general structure, and dif- 
ferent anomalous scatterers) the two groups would be 
isomorphous. In special cases it is possible that the 
point-group symmetry of the diffraction pattern is 
higher than the crystal point-group symmetry. A very 
common 'special case' is that in which anomalous 
dispersion can be ignored and the crystal point group 
is non-centrosymmetric; in such a case, the point 
group of the diffraction pattern is the direct product 
of the crystal point group with point group ], and as 
a consequence, the diffraction pattern of such a crystal 
can be ascribed to one of the 11 Laue groups. This 
result is generally referred to as Friedel's law. Under 
more restrictive conditions the symmetry of the dif- 
fraction pattern of a crystal can be higher than the 
corresponding crystal point-group symmetry other 
than as a result of Friedel's law. For these cases, 
Sadanaga & Takeda (1968) coined the term 'diffrac- 
tion enhancement of symmetry', and Iwasaki (1972) 
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used it in his attempt to develop a systematic theory 
of this phenomenon. 

Several cases of this type of enhancement have been 
encountered in actual experiment (Ramsdell & Kohn, 
1951 ; Ross, Takeda & Wones, 1966), and it could per- 
haps be argued, as Iwasaki (1972) does, that the number 
of examples could be higher, especially among in- 
organic structures, if it was not for the fact that crys- 
tallographers usually expect to find a structural model 
in one of the space groups isogonal with those point 
groups obtained from the Laue group by application 
of Friedel's law. 

In this paper we study a set of hypothetical struc- 
tures which would produce this kind of effect (essen- 
tially they coincide with lwasaki's type 1 crystals) 
using a modified approach which leads to enhance- 
ment conditions which are more compact and easier 
to work with than Iwasaki's. From these conditions 
we have found all the cases reported by Iwasaki (1972), 
and additional cases reported thereafter (Matsumoto, 
Kihara & Iwasaki, 1974), plus a dozen new cases 
previously unknown. We also prove several theorems 
which drastically limit the possible enhancement cases 
of the type we consider, and have generalized our 
approach to cover also the phenomenon called 'double 
enhancement', recently defined by Matsumoto (1975). 

2. Enhancement conditions 

We consider a crystal composed of several substruc- 
tures and assume that the lattice parameters are con- 
sistent with the symmetry to be enhanced. Following 
Iwasaki (1972), we write the structure factor for re- 
flexion h in the form: 

F(h)= ~ Fp(h)exp [27zih. up-] (1) 
p 
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where Fp(h) is the structure factor corresponding to 
the pth substructure, and up is the radius vector of the 
origin of the pth substructure, drawn from the origin 
of the crystal. According to Iwasaki (1972) the intensity 
can be written as 

IF(h)] 2= ~ IFp(h)] 2 
p 

+½ [F (h)F;Chl exp (2 ih. 
p~q 

+ F*p(h)Fq(h) exp ( -  27rih. Upq)] (2) 

where U p q = % - u  o. We assume that the diffraction 
patterns of all substructures exhibit some rotational 
symmetry represented by the operator R, i.e. 

IVp(h)l=lFp(Rh)[ V p,h (3) 

where R represents the transpose of R. A sufficient 
(but not necessary) condition for (3) to be true would 
be that all substructures possessed a symmetry opera- 
tion with the same rotational part R. In this particular 
case, (Brown, 1971), 

Fp(Rh) = Fp(h) exp ( -  2rcih. tp) (4) 

where tp is the translation associated with the rota- 
tional operator R in the pth substructure. In a more 
general case, 

Fp(Rh)= Fp(h) exp [iTp(h)], (5) 

~/p(h ) = go p(Rh ) - go p(h ) (6) 

where sop(h) is the phase angle of the reflexion of index 
h in substructure number p. If we rewrite (2) for 
IF(~h)l 2 and substract (2) from the result, we obtain 

dI(h) = IF(Rh)I 2 -IF(h)l 2 

= ~ tpq[COS (27rRh. upq +~/pq)-COS (27rh. Upq)] 
p¢q  

+ gpq[sin (21rRh. Upq + ypq)-sin (21rh. Upq)] (7) 

where ypq = 7p-  ~q and 

tpq = Ap(h)Aq(h) + Bp(h)Bq(h) 
gpq = Ap(h)Bq(h)- Aq(h)Bp(h) . (8) 

By the use of standard trigonometric identities, and 
the fact that 

[ih . Upq = h. Rupq (9) 

(7) can be rewritten in the form 

- tpqsin[~h.(upq+Rupq)+ ~-~l } 

x sin Itch . (Rupq- Upq) + ~-~1 . (10) 

A sufficient condition for AI(h) to vanish (and hence, 
for the operator [i to appear in the diffraction pattern 

of the crystal) can be obtained by making either of 
the two factors in each term of summation (10) equal 
zero. Since 

gPq - t a n  [goq(h)-gop(h)], tpq¢O (11) 
tpq 

we obtain 
sop(h)- goq(h) } 7p(h)- 7q(h) + = n 

h .  (Rupq + Upq) + 2re 7t (12) 

or gpq = tpq = 0 

and 
h . (Rupq-Upq)+ 7p(h)- 7q(h) 

2re =m (13) 

where n and m are integers. 
The second form of (12) is appropriate for the case 

of one of the structure factors involved being equal to 
zero. Equations (12) and (13) will be called general 
enhancement conditions in what follows. Since we 
have found these conditions by making each term of 
the summation (10) vanish, we are restricting our work 
to those cases in which any pair of substructures 
would itself constitute a structure for which A I(h)= 
0, V h. This explicitly eliminates Iwasaki's (1972) type 
2 crystals from any consideration here. 

3. S i m p l e  e n h a n c e m e n t  

In simple-enhancement cases the substructures pos- 
sess the rotation operator R, and (4) is satisfied. Hence, 

7pq = 27zh. (t o - tp) (14) 

and the enhancement conditions (12) and (13) now 
read 

h. [Rupq+Upq+(tq-t,)]+ gop(h)-goq(h) = n [  (15) 
7"C / 

gpq : tpq = 0 o r  

and 
h .  [Rupq - Upq + (t o - tp)] = m 

where m and n are integer numbers. 

(16) 

3.1. Type 1 crystals 
If tp=tq for every p,q, and gop(h)=goq(h)+m~ for 

every n o n - z e r o  Fp, Fq, then the structure belongs to 
type 1 (Iwasaki, 1972). The following are examples of 
physically possible type 1 crystals. (a) All substructures 
are geometrically and chemically identical; scattering 
can be normal or anomalous. (b) All substructures are 
geometrically identical, and all atoms of a given sub- 
structure belong to the same chemical species; normal 
scattering only. (c) All substructures are geometrically 
identical, and the atoms of a given substructure be- 
long to different chemical elements. In this case we 
also require that the scattering factors of atoms oc- 
cupying homologous positions in different substruc- 
tures must be proportional, or, to say it differently, the 
electron density of substructure number m has to be 
equal to the electron density of substructure number 
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1 multiplied by a positive constant Cm (and, of course, 
shifted by the corresponding u vector). This case is 
only valid for normal scattering, and the crystal will 
be approximately type 1 only to the extent that pro- 
portionality between the different f curves involved 
can be safely assumed to hold. 

For type 1 crystals, conditions (15) and (16) become 

h. (Rupq + upq) = n 

h.  (Rupq - Upq) = m 

and, if we restrict the analysis to 
reflexions, these conditions reduce 

RUpq -t- Upq = LI 

Rupq --  Upq = L 2 

where L~ and L2 are (direct) lattice vectors. 
Either of conditions (19) or (20) is sufficient for the 

operation [~ to be present in the weighted reciprocal 
- lattice of the crystal. However, if we are to require 

that symmetry enhancement occur, we need the addi- 
tional condition that the total structure must not 
possess the operation whose rotational part is to be 
diffraction enhanced. In this connexion, we prove the 
following. 

(17) 

(18) 

the case of Bragg 
to 

(19) 

(20) 

Theorem I. In a crystal composed of any number 
of substructures, all of them having the symmetry 
operation (R, t) with respect to their origins, the rela- 
tion 

Rupq - u,~ = Lpq, Lpq ~ ~o (20') 

satisfied by all vectors upq, is sufficient for the total 
structure to possess the symmetry operation (R,t). (~o 
represents the set of all lattice translations). 

Proof. Take any two substructures and let their cor- 
responding electron densities be Ql(r) and Q2(r). S u p -  
p o s e  the first has the operation (R,t) with respect to 
point ul (in other words, the point of radius vector 
Ul is invariant under the rotational part of that opera- 
tion), and the second has the same operation with 
respect to point u2: 

Q l ( r ) = Q l [ a ( r - u l ) + U l  + t ]  (21) 

QE(r)=~2[R(r-u2)+u2 + t ] .  (22) 

The composite electron density can thus be written 

o ( r ) = Q ~ [ R r - a u l  +u~ + t ]  +Q2[Rr -Ru2  +u2 + t ]  (23) 

and if we substitute condition (20') into the previous 
expression, 

Q(r) = Q1 [ R r -  Rul +Ul -t-t] 

+ Q2[Rr-  Rul -~-u I + t  + L12] 

= ¢ [ R ( r - u l ) + u x  + t ]  (24) 

which means that the composite structure has opera- 
tion (R, t) around point Ul. It is evident that the proof 

can be extended to any number of substructures. The 
converse theorem is not true, since counter-examples 
can be found; for instance, if two geometrically and 
chemically identical substructures having a twofold 
axis at their origins are shifted by an arbitrary vector 
perpendicular to that twofold axis, the resulting com- 
posite structure will have a twofold axis at the mid- 
point of the segment joining the origins of the sub- 
structures, but condition (20) will not, in general, be 
satisfied. 

According to theorem I, condition (20) has to be 
violated in every enhancement case for type 1 crystals; 
consequently, our enhancement conditions for these 
crystals are (19) and the negation of (20), i.e. 

Rupq - Upq -~ L, V L e ~¢, for some Upq. (25) 

Note, however, that (19) and (25) are not sufficient 
conditions of enhancement, since (25) is only a neces- 
sary condition. This means that in principle, a type 1 
crystal constituted of substructures which satisfy both 
(19) and (25) could still possess operation (R, t), and 
consequently, its diffraction pattern would not show 
symmetry enhancement. It appears that this can only 
occur in extremely degenerate cases (for instance, in 
the above-mentioned counter-example to the con- 
verse of theorem I) and for sufficiently general cases 
we can take (19) and (25) as a set of sufficient condi- 
tions. All cases presented in this paper have never- 
theless been checked to ensure that, for a given pair 
of substructures, the composite structure does not 
possess the operation to be diffraction enhanced. 

For type 1 structures, Iwasaki's enhancement con- 
dition is 

cos (2rch. Upq)= cos (2rchh. Upq), V h (26) 

which is equivalent to conditions (19) and (20). Our 
set of conditions is not only more restrictive than 
Iwasaki's, but more compact and easier to use as well. 

3.2. New cases of enhancement in type 1 structures 
The different cases of enhancement can be obtained 

by straightforward application of conditions (19) and 
(25). However, we prove first two theorems which 
limit the possible outcomes of such a search. 

Theorem II. There can be no enhancement of a 
rotational operator R present in all substructures of 
a type 1 crystal if these are centrosymmetric. 

Proof. If the substructures possess a symmetry opera- 
tion with a rotational part R with respect to a given 
point, and are centrosymmetric, then they necessarily 
possess a symmetry operation having - R  as its rota- 
tional part, with respect to some other point. (Note 
that if matrix R represents a n-fold rotation around 
some axis, then matrix - R  represents a n-fold inver- 
sion rotation around the same axis.) If the enhance- 
ment condition (19) is satisfied for operation R, this 
can be written in the form 
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( - -  R)Upq - -  Upq = L, L e (27) 

and, according to theorem I this is sufficient for the 
operation - R  to be preserved in the total structure, 
and hence for the operation - R  to appear in the dif- 
fraction pattern. On the other hand, since the sub- 
structures are centrosymmetric, and the enhancement 
condition (19) is satisfied by any vector Upq for the 
operation of inverting through the origin, the diffrac- 
tion pattern will be centrosymmetric, and the presence 
of operation R in the diffraction pattern can be con- 
sidered as a byproduct of Friedel's law rather than 
as a result of enhancement.* This completes the proof 
of theorem II. 

This theorem was enunciated by Iwasaki (1972), as 
a result of an inductive process in which he observed 
that none of the enhancement cases he found were 
based on centrosymmetric substructures. Since he 
failed to obtain all the cases, we consider it is pertin- 
ent to present here a general proof. 

Theorem III. If the enhancement condition for the 
operator R is satisfied, then the operation R 2 is neces- 
sarily preserved in the point group of the composite 
structure. 

Proof. We assume that condition (19) is satisfied by 
a given operator R and a vector u (we drop the sub- 
scripts here for convenience). If we operate with R on 
both members of (19), we obtain 

R2u + Ru = L', L' e ~a (28) 

since the lattice must be consistent with any rotational 
symmetry that the substructures possess. From (19) 
and (28) we obtain 

R 2 u -  u =  L", L" e ~ (29) 

which, according to Theorem I, is sufficient for the 
composite structure to possess the operation (R 2, 20. 
(q.e.d.) 

We now turn back to the problem of finding vector 
solutions to (19) subject to condition (25). Equation 
(19) can be put in the form 

(R + E)u = L, L e A ° (30) 

* Note, however, that the crystal may be non-centrosymmetric; 
in that case, if the substructures are of the kind described in example 
(a) above, we will have a non-centrosymmetric crystal whose dif- 
fraction pattern is centrosymmetric even with anomalous scattering. 
This would be a non-trivial case of enhancement of the inversion 
operator, and as such, ought to be included in the definition of 
enhancement. The statement of theorem II has to be understood 
in the sense that the diffraction pattern of a type 1 crystal in which 
the substructures are centrosymmetric would not show spurious 
symmetry beyond the expected addition of an inversion centre. 
Whether or not we consider this to be enhancement depends on 
the definition chosen for the phenomenon. In this paper we have 
chosen to follow the definition put forward by previous authors 
(see references), and consider as enhancement cases only those in 
which the diffraction symmetry is higher than expected under normal 
circumstances; it should however be obvious that, from a theoretical 
point of view, Friedel's law should be considered as a particular 
case, however trivial, of the more general phenomenon. 

where E is the identity operator. It is clear that there 
will be an infinite number of solutions for each L (i.e. 
vectors depending on variable parameters) if det(R + 
E)=0.  This is the case for symmetry elements 2, m, 
3, 4 and 6. For the remaining symmetry elements 3, 
4 and 6, det(R + E) 4: 0, and there will be a unique 
vector u satisfying (30) for each lattice vector L, i.e. 
the components of u will be fixed numbers. The sym- 
metry elements 3 and 3 can be a priori excluded from 
any further consideration, since theorems II and III 
gurantee that they can never be enhanced. 

Taking all these limitations into account, we have 
obtained all the cases found by Iwasaki (1972), and 
the supplementary cases published by Matsumoto, 

Table 1. Simple enhancement cases (type 1) 
previously published (Matsumoto, Kihara & Iwasaki, 

1974) 

Diffraction 
symmetry 

2/m 
c axis 
unique 
mmm 

4/m 

4/mmm 

31m 
3ml 
6/m 
6/mmm 

Crystal 
symmetry Enhancement Symmetry of 

(point group) condition substructures 

1 00w, 0~w, ~0w, ~ w  m 
uv0, u~  2 

2 a axis u00, u0~, u½0, u:~ 
unique 
b axis 0v0, 0v~, ½v0, ½v~ 222 
unique 
c axis OOw, O~w, ~Ow, ½~w 
unique 

m a axis 0v0, 0v~, ½v0, 1 1 ~v:~ mm2 
unique OOw, O~w, ½0w, ~w m2m 

b axis uO0, uO~, u½0, u~ mm2 
unique OOw, 0½w, ~Ow, ~w  2mm 

c axis uO0, uO~, u½0, u~ m2m 
unique 0v0, 0v~, ½v0, ½v~ 2mm 

2 00w, ~ w  2[ 

mm2 OOw, ~w 7~m2, 7~2m . 
4 00w, ~w 422 

3 00w 312 
3 00w 321 
3 00w 
31m 00w ~2m 
3ml 00w 6m2 
6 00w 622 

Table 2. New enhancement cases for type 1 crystals 
based on primitive lattices 

Diffraction Crystal Enhancement Symmetry of 
symmetry symmetry condition substructures 

3m 3 00w,* ~w, t  ~ w t  321 
3m 3 ~O, ~-!f13, ~3j½, ~y~ 31m 
6/m 3 ~0, ~0, 121 rs-~, ~-~ 6 
6/mmm 312 ~30 ' ~3.0, 121 r~,  ~-~ 622 
6/mmm 3ml ~3.0 ' ~3.0, 121 g-j-~, ~ 6mm 
6/mmm 6 ~r~O, ~ ) ,  121 3-~, ~ 62m 

* This case has been previously published (Matsumoto et al., 
1974); included here to complete all cases for point group 321. 

t w # ½ if lattice is R, otherwise unrestricted. 
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Kihara & Iwasaki (1974). For the convenience of the 
reader, we present their results in Table 1. In addition 
to these, we have found a dozen more cases which 
are summarized in Tables 2 and 3. In non-primitive 
lattices, the presence of lattice vectors with non- 
integral components produces several special enhance- 
ment cases, listed in Table 3. The cases presented in 
Table 2 are valid for all lattice types consistent with 
each point group. 

Table 3. New cases of enhancement for type 1 
structures based on non-primitive lattices 

Crystal Substructures 
Diffraction lattice point Enhancement lattice point 
symmetry type group condition type group 

4/m B 2* -}0~, O~ I 4 
4/mmm F 222t ,~0~, 0 ~  I 422 
4/mmm I mm2 ~ ,  O~ I 4mm 
4/mmm I ~ ~3~, O~ I 7~2m 
mmm B 2t  111 333 az-x, az-¢ F mm2 
m3m F 23 ~ 333 , a-~ F 432 

* c axis unique; B-lattice axes can be obtained from I-lattice axes 
by (110/010/001). 

t F-lattice axes can be obtained by (110/110/001) from/-lat t ice 
axes. 

t B-lattice axes are obtained by (100/- ,~) /001)  from F-lattice 
axes. 

It can be seen that, besides the point group and 
lattice type, the orientation of the point-group sym- 
metry elements with respect to the shortest lattice 
translations is important in those cases in which more 
orientations than one are possible. In other words, 
the important thing is the so-called 'arithmetic crystal 
class' (Niggli & Nowacki, 1935). For instance, a crystal 
of type 1 based on a body-centred lattice and con- 
stituted of substructures belonging to point group 742m 
can show diffraction enhancement of symmetry if the 
substructures are combined by vectors of the type 
~ ,  or 0-~ (Table 3); the 74 axis is preserved in the com- 
posite structure, and the rest of the symmetry ele- 
ments in the substructure point group appear in the 
weighted reciprocal lattice, even though they are not 
present in the crystal point group. A similar result 
cannot be obtained if the point group orientation is 
74m2, because in this case the preservation of the 74 
axis automatically implies that the rest of the point 
group symmetry elements are also preserved in the 
composite structure. This result can be ultimately 
traced to the fact that in all space groups having an I 
lattice, which are isogonal with point group 742m 
(I742m and I742d) there are two different kinds of equi- 
points with local symmetry 74, while in the correspond- 
ing_space groups for which the point group orientation 
is 4m2 (I74m2 and I74c2), all equipoints which have at 
least local symmetry 4 are identical (International 
Tables for X-ray Crystallography, 1952). 

3.3. Type 3 crystals 
Type 3 crystals (Iwasaki, 1972) are those constituted 

of two substructures which belong to the same point 

group but to different space groups. This means that 
the rotational part R of any symmetry operation is 
common for both substructures, but the translational 
parts may be different. The enhancement conditions 
(15) and (16) cannot be further simplified in this case. 
In general, it will be extremely unlikely that two sub- 
structures satisfy the first part of (15) for all h. Iwasaki 
(1972) gives several concrete examples in which (16) 
is satisfied for some h, and the second part of (15) 
holds for every other h. All these examples were 
derived on the assumption that u12=0. It should be 
obvious, by consideration of (16), that all these exam- 
ples would hold equally well for vectors in which 

R u l z - U 1 2 = L ,  L ~ A  D (31) 

is satisfied. The situation in which 

Rupq - Upq + t p -  tq = L, L ~ A ° (32) 

should however be avoided in constructing such 
examples, since a simple extension of theorem I will 
show that (32) is a sufficient condition for the com- 
posite structure to possess both operations, (R, tp) 
and (R, tq). 

4. Double enhancement 

Suppose a crystal is composed of substructures, and 
these are, in turn, constituted by sub-substructures. 
Under certain conditions, the crystal may exhibit the 
symmetry of the sub-substructures in its diffraction 
pattern, even if the substructures do not possess this 
symmetry; in other words, there is simple enhance- 
ment at the substructure level, and again at the struc- 
ture (crystal) level (Matsumoto, 1975). 

We use the general formulation developed in § 2 of 
this paper to analyse double enhancement. Since the 
diffraction symmetry of the substructures is enhanced, 
condition (3) is satisfied, and we can apply at once 
conditions (12) and (13) to the radius vectors between 
substructure origins. We restrict the discussion to the 
case that the substructures are themselves type 1 struc- 
tures, and we assume that the sub-substructures cor- 
responding to a given substructure are so arranged 
as to satisfy conditions (19) and (25) for a given rota- 
tional operator R. The condition that all substruc- 
tures belong to type 1 can be expressed as 

F~(h)=c~F~(h) (33) 

where F~(h) is the structure factor of index h of the 
rth sub-substructure belonging to the pth substruc- 
ture, and where c~ is a real number for every p, r, which, 
in general, will depend on h. If we designate by u~ the 
vector between the origins of the rth and sth sub-sub- 
structures of the pth substructure, then the condition 
for enhancement to occur at the substructure level is 

Ru~s + u~s = L, L ~ A °, V uP. (34) 
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From (33) we obtain, by using an equation similar 
to( l) ,  

FP(h)= F~(h) ~ c p exp [2nih. up] (35) 

where FP(h) is the structure factor corresponding to 
the pth substructure, and up is the radius vector of the 
origin of its rth sub-substructure drawn from the origin 
of the pth substructure. From (35) and (4) we obtain 

FP(Rh) = F~(h) exp [ - 2rcih. t] 

x ~ cp exp [27zih. RuP], (36) 

since condition (4) applies to the structure factor of a 
given sub-substructure. If we define the origin of the 
pth substructure as coinciding with the origin of one 
of its sub-substructures, namely the sth sub-substruc- 
ture, we can obtain from (34) 

h. R u p = - h . u  p+n,  n in teger .  (37) 

We define a complex number H by the expression 

H = ~  cp exp [2Tcih. uP] = IH] exp [i~p(h)]. (38) 

Using (35), (36), (37) and (38) we obtain 

FP(h) = F~(h)IHI exp [i%(h)] (39) 

FP(Rh) = F~(h)lnl exp [ - i ~ p ( h ) -  2rcih. t ] ,  (40) 

from which [see definition of ),p(h) in (6)]: 

yp(h) - 7q(h) = 2[-%(h)- %(h)]. (41) 

We call the phase angle of F~(h) tip(h), and recall the 
meaning of q~p(h) in (6). Then, 

q~p(h)- ~0q(h)= [~p(h)-%(h)] + [tip(h)- flq(h)] (42) 

so that we can write the double-enhancement condi- 
tions, starting with (12) and (13), as 

h . (Rupqq--Upq)-~- flp(h)-flq(h) =n (43) 
7Z 

h. (Rupq-Upq)+ %(h) -  ~p(h) = m  (44) 
7Z 

where Upq have the usual meaning of vectors between 
the origins of different substructures, and n and m are 
integers. 

4.1. Discussion of the conditions of double enhancement 
4.1.1. First condition 

Suppose 

FP(h)=cPqF](h) V h, V p, q (45) 
is satisfied, where c pq is a real number possibly de- 
pendent on h. Condition (45) will be satisfied, for in- 
stance, if all the sub-substructures in the crystal are 
geometrically identical and chemically 'proportional '  
in the sense of example (c) of § 3.1 above. From the 

definition of tip(h) we deduce that condition (43) can 
now be written, for Bragg reflexions, in the form 

Rupq -t- Upq = L, L s ~ .  (46) 

Since we are assuming that there is enhancement at 
the substructure level, the position vectors of the sub- 
substructure origins referred to the origins of the cor- 
responding substructures satisfy equations similar to 
(46). Hence, the phenomenon can be described as a 
case of simple enhancement, in which the sub-sub- 
structures play the role of substructures. 

4.1.2. Second condition 
(a) We make cp= 1, Vp, r [cf equation (33)1. A pos- 

sible way of satisfying this would be to have a struc- 
ture in which every substructure is formed of geome- 
trically and chemically identical sub-substructures; 
sub-substructures belonging to different substructures 
could possibly be different. In this case, the substruc- 
tures will be type 1, even for anomalous scattering. 
Under the above assumptions, the quantity ~p(h) de- 
fined in (38) can be interpreted as the phase angle of 
the geometrical part of the structure factor of the 
'structure' formed by the origins of the different sub- 
substructures of the pth substructure. 

Suppose now that we partition a crystal into sub- 
structures in such a way that all atoms of the same 
chemical species belong to the same substructure. 
Within each substructure we take monatomic (and 
hence centrosymmetric) sub-substructures. It is clear 
that such a partition satisfies the condition cP= 1, 
Vp, r stipulated in the previous paragraph, and also 
that the centre of symmetry of the sub-substructures 
will be enhanced at the substructure level. If we wish 
the inversion centre to appear in the diffraction pat- 
tern through double enhancement the condition to 
satisfy is 

2rch. Upq + %(h) -  %(h) = n, n integer (47) 

obtained from (44). This is the same condition ob- 
tained by Iwasaki (1974) in a paper in which he studied 
several cases of non-centrosymmetric structures which 
satisfy Friedel's law even with anomalous scattering. 
All the cases described therein can clearly be con- 
sidered as double enhancement cases of the type 
studied here. 

(b) If the following conditions: 

u p = u  q, Vp, q ,  Vr (48) 

c p=c~, Vp, q,  Vr, (49) 
are satisfied, and each substructure consists of the 
same number of sub-substructures, it can be seen that 
condition (44) simplifies to 

Rupq - Upq = L, L ~ A" (50) 

which is now a perfectly valid enhancement condition, 
because we are assuming that the substructures do 
not possess any symmetry operation having R as its 
rotational part. 
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The above conditions can be satisfied if the crystal 
fulfills all the following requirements. (i) All substruc- 
tures are composed of the same number of geome- 
trically identical sub-substructures, identically ar- 
ranged in space. These sub-substructures are chemi- 
cally 'proportional'. (ii) The ratio of the atomic scatter- 
ing factors of homologous atoms in two different sub- 
substructures of a given substructure is the same as 
the corresponding ratio for the sub-substructures 
which occupy homologous origins in a different sub- 
structure. (iii) Sub-substructures corresponding to dif- 
ferent substructures need not be geometrically iden- 
tical. Such a crystal would approximately satisfy con- 
ditions (48) and (49) with the limitations established 
in example (c) of § 3.1. 

4.2. Double-enhancement cases in type 5 crystals 
We define as type 5 crystals those which satisfy 

(45), (48) and (49), with the additional condition that 
all substructures have the same number of sub-sub- 
structures. A possible example would be any crystal 
which fulfils requirements (i) and (ii) and the contrary 
of (iii) in §4.1. 2(b) above. From the analysis in §4.1 
we conclude that, for such crystals, the double- 
enhancement conditions (43) and (44) reduce to 

Rupq + Upq = L1 (51) 

Rupq-Upq=L2 (52) 

for the case of Bragg reflexions, where L1 and L 2 a r e  

lattice vectors. 
It is to be noted that there are restrictions in the 

possible symmetries that a crystal exhibiting this kind 
of double enhancement could possibly have, similar 
to simple-enhancement cases. In particular, since we 
are assuming that there occurs simple enhancement of 
the operator R at the substructure level, theorem III 
guarantees that the substructures possess operation 
(R2,2t). If either (51) or (52) is satisfied, an argument 
similar to that given for the proof of theorem III will 
show that this automatically entails the preservation 
of the operation R 2 in the crystal point group. This 
means that if the point group of the sub-substructures 
is a cyclic one, and we arrange them in such a way that 
this point-group symmetry appears in the weighted 
reciprocal lattice by double enhancement, one could 
always obtain the same relation crystal symmetry/ 
weighted reciprocal lattice symmetry by a case of 
simple enhancement. 

Suppose, for example, that a crystal has sub-sub- 
structures based on an I lattice, with point-group sym- 
metry 74. According to Matsumoto et al. (1974), (see 
Table 1) these sub-substructures can be combined by 
vectors 00w to produce substructures belonging to 
point group 2. If we combine these substructures by 
vectors of the type ½0~ we will satisfy condition (52) 
for the fourfold inversion operator, and we will end 
up with a monoclinic crystal (c axis unique), based on a 

B lattice, and belonging to point group 2. Note that 
we have not tried to satisfy condition (51) for the second 
step, because then the case would have reduced to a 
case of simple enhancement. Our final result cannot 
be explained in terms of any simple enhancement case, 
but the gain in symmetry 2 ~ 74 (or to 4/m, if Friedel's 
law holds) is one which could be achieved by simple 
enhancement. 

More interesting are those cases of double enhance- 
ment in which the corresponding symmetry gain could 
not possibly be obtained by simple enhancement. Let 
us consider, for example, sub-substructures belonging 
to point group 222. According to Matsumoto et al. 
(Table 1) we can build with them substructures belong- 
ing to point group 2 (b axis unique) by vectors of the 
type 0v0. We can now combine such substructures 
in a way such that the twofold axis operation is de- 
stroyed but enhanced; this can be accomplished by 
vectors of the type uOw or u½w. However, we want to 
have the other two twofold axes present simultaneously 
in the diffraction symmetry group of the crystal by 
double enhancement; we can obtain that result by 
specializing u or w to zero value. For instance, if we 
take u00, we simultaneously satisfy: (a) simple-en- 
hancement* condition (51) for 2]]y, (b) double-en- 
hancement condition (52) for 2]Ix, (c) double-enhance- 
ment condition (51) for 2] z. Tile final point group of 
the crystal is 1, while its diffraction symmetry is mmm 
(or 222, where Friedel's law does not hold). 

We have made no attempt to derive and tabulate 
all possible double-enhancement cases for type 5 
crystals. The cases presented in Table 4 are the ones 
we have found that satisfy the condition that the gain 
in symmetry, in going from the crystal point group 
to the point group of the weighted reciprocal lattice, 
cannot be achieved by any of the simple enhancement 
cases known to date. According to the extension of 
theorem III (see § 4.2), if we have sub-substructures 
having a certain point-group symmetry we can only 
construct with them double enhancement cases in 
which the final crystal has a minimum symmetry, 
which will correspond to the group formed by the 
squares of all the operations in the point group of the 
sub-substructures. This means, for example, that if the 
sub-substructures have a fourfold axis, the minimum 
symmetry of a crystal built from them which shows 
double enhancement will correspond to point group 
2. Consequently, if we disregard those cases in which 
the maximum lowering of symmetry can be obtained 
in a simple enhancement case, we will have to consider 
only point groups ram2, 222, 422, 4ram, 74m2, 622, 6ram 
and 6m2 as possible symmetries for the sub-substruc- 
tures. We have found possible double-enhancement 
cases for all these, with the exception of point groups 
4ram and 6ram. The last eight cases listed in Table 4 
can be grouped in pairs to form only four essentially 

* The enhancement is simple because the substructures do pos- 
sess a twofold axis parallel to y. 
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different cases. The distinction between the two mem- 
bers of a given pair is purely formal and depends on 
how the substructures are defined. A similar statement 
can be made about the first nine cases, which can be 
reduced to essentially three different possibilities. 

5. Concluding considerations 

The theory presented here covers in a single formula- 
tion the enhancement of diffraction symmetry for 
crystals belonging to types 1 and 3, and the double 
enhancement of diffraction symmetry for certain crys- 
tals which we have called type 5 crystals, as well as 
the double enhancement of the inversion operation 
in crystals which would normally violate Friedel's law 
under conditions of anomalous dispersion. The general 
equations follow loosely Iwasaki's (1972) formulation, 
but we have modified it by introducing condition (3) 
early in the derivation, instead of the more restrictive 
condition (4) that Iwasaki uses. Moreover the use of 
identity (9) permits us to obtain the final enhancement 
conditions for the different types of crystals in the form 
of vector equations, many of whose solutions can be 
readily found by geometrical arguments. The proofs 
of theorems I through III (and their extensions) defi- 
nitely help in the process of finding enhancement cases, 
by establishing limits to the possible range of the solu- 
tions. The use of condition (3) gives generality to the 
treatment so that equations (12) and (13) can be used 
for simple as well as for double enhancement cases. 
By the use of this formulation we have: (a) considerably 
enlarged the catalogue of known simple enhancement 
cases for crystals of type 1; (b) Classified all cases 
described by Iwasaki (1974), as special double-en- 

hancement cases; (c) Derived and tabulated a set of 
possible double-enhancement cases for type 5 crystals. 

Very recently Iwasaki (1975) announced the deriva- 
tion of more cases of simple enhancement for type 1 
crystals. A tabulation of these new cases has not ap- 
peared in print as yet, but we find that our results 
appear to be irreconcilable with Iwasaki's contention 
that in crystals formed by equal substructures an en- 
hancement case is possible in which a rombohedral 
crystal may show a cubic diffraction pattern. In our 
theory such a case is impossible, since theorem III 
precludes the possibility of a threefold rotation being 
diffraction enhanced. Our theory appears to be in- 
compatible as well with Matsumoto's (1975) statement 
that a triclinic crystal could give a cubic diffraction 
pattern by a process of double enhancement. In our 
theory, a triclinic crystal cannot even give a tetragonal 
pattern, since the minimum point symmetry of a crys- 
tal which shows double enhancement is given by the 
group formed by the squares of all the operations 
present in the diffraction group. In this case, however, 
it is difficult to compare our results with Matsumoto's, 
because his abstract is not very explicit as to the con- 
ditions that his sub-substructures and substructures 
satisfy; our conclusions about symmetry relations in 
double enhancement cases (see § 4.2 above) are, of 
course, limited to type 5 crystals. 

It should be borne in mind that the results of our 
analysis only apply to kinematic diffraction situations; 
we thank our referee for pointing this out to us. 
Finally, it must be emphasized that the conditions 
tabulated in this paper are not necessary conditions 
of enhancement; they are only sufficient, with the 
limitations established in § 2. 

Table 4. Cases of double enhancement in type 5 crystals 
Diffraction Crystal Double-enhancement 
symmetry symmetry conditions* 

mmm 1 OvO, Ova, ½vO, ½v~ 
OOw, O~w, kOw, ~w 

1 uO0, u~O, uO~, u{~ 
OOw, O~w, ~Ow, ~w 

1 uO0, u~O, uOk, ukk 
o~o, o~, ½~o, ½~ 

1 uO0, u-~3, u0½, u-~ 
1 ovo, o~, ½vo, ½d 
1 u00, u~0, u0k, u~ 
1 00w, ½0w, 0~w, ~ w  

ovo, od, ½vo, ½d 
1 00w, ½0w, 0~w, ~w 

4/mmm (F)2(c unique) 00w, 0~w, ~3w, ~i-~w 
(B)2(c unique) ~ ,  0-~ 
(I) 2(c unique) 00w, ~ w  
(B)2(c unique) 111 333 ~-4g, 

6/mmm 3 ~jO, ~s~, ~j0, 21x 
3 00w 
3 ~j0, ~s½, ~0,  z ' l  
3 00w 

* When lattice type changes in going 
lattice type of the substructure. 

Substructure Simple-enhancement Sub-substructure 
symmetry conditions symmetry 

2 (a unique) u00, u0~, u~0, u ~  222 

2 (b unique) 0v0, 0v~, ½v0, ½v~ 222 

2 (c unique) 00w, 0½w, ,~Ow, ~ w  222 

m (a unique) OvO, Ot~, ½vO, ½v~ mm2 
m (b unique) uO0, u½0, uO~, u~-~ mm2 
m (a unique) OOw, 0½w, ~Ow, ~w m2m 
m (c unique) uO0, u0½, u~O, u~ m2m 
m (b unique) OOw, O~w, ~Ow, ~w 2mm 
m (c unique) OvO, Ova, ½vO, ½~ 2ram 
(F)222 .~-, 0 ~  (I)422 
(I)4 00w, ½~w (I)422 
(I)7~ ~ ,  0 ~  (I)7~2m 
( F )mm2 OOw , ~J.zw (I)7~2m 
6 00w 622 
312 ~j0, ~3-!i, ~j0, ~-~ 622 
31m 00w ~2m 

~-z~0, ~ ,  ~--~jO, ~ ~2m 

from sub-substructure to substructure these vectors are referred to the new axes imposed by the 
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Note added in proof'. Dr T. Matsumoto (personal 
communication) has pointed out to us that some of the 
cases presented in Tables 2 and 3 do not hold as 
enhancement cases for pairs of geometrically and 
chemically identical substructures. It is still possible to 
obtain enhancement in some of those cases by 
combining more than two geometrically and chemic- 
ally identical substructures, but, in any case, all the 
cases tabulated in this paper hold as enhancement 
cases in the more general instance of chemically 
different ( 'proportional') substructures. 

We extend our appreciation to Professor A. Cha- 
morro (University of Bilbao) for several stimulating 
discussions on mathematical topics. We are grateful 
to Professor W. Nowacki and PD P. Engel (both 
University of Bern) for reading the manuscript and 
for their valuable suggestions. 
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The iterative procedure of phase determination in direct methods is considered as a filtering process. 
The use of different filter transforms for more effective filtering is proposed. The eigenvector transform 
for optimal extraction of reliable structure information from approximate densities is introduced. 

1. Introduction 

Since the first papers on direct methods for structure 
determination (Karle & Hauptman, 1950; Sayre, 1952) 
it was apparent that these methods were related to 
the a priori information present in the atomic ar- 
rangement and the electron density of the structure 
in question. The principles of positivity and atomicity 
together with the observed structure-factor ampli- 
tudes enabled the solution of structures of considerable 
complexity. Until then, the normal method of struc- 
ture determination, the heavy-atom method or the 
more general partial-structure method, also used the 
atomicity principle but in a different way. The po- 
sitioning of the heavy atom or partial structure and 
the consequent phasing of structure factors is of quite 
specific character and only pertains to the structure 
in question. However, the determination of the missing 
structure part by weighting the structure-factor am- 
plitudes also relies on quite general principles and 
involves statistical considerations. 

In contrast, the a priori information of direct 
methods is in most cases of an entirely general, sta- 
tistical character. The natural way to estimate and 

measure the amount  of information present in these 
principles is by information theory. In the following 
some information-theory aspects are used to derive 
results for both heavy-atom and direct methods to 
indicate their similarity. Furthermore the treatment 
is given of a special problem in structure determina- 
tion as seen from information theory. 

2. Structure determination as image filtering 

X-ray structure determination can be considered as 
an imaging of an object (structure) where the Fourier 
transformation in the nonexistent X-ray lens is re- 
placed by a calculated Fourier transformation to 
which the principles of optical image formation can 
be applied. Of special concern in this context is the 
separation of object and noise in an image. 

r=s.n ~ R=S.N GR"=R'GJ~ r'=s÷n'~o 

Fig. 1. Generalized Wiener filtering. 


